Arduino FFT Audio Spectrum analyzer on 8x32 color matrix WS2812B

  The spectrum analyzer displays the amplitude of signals as a function of frequency, allowing engineers and technicians to visualize and analyze signal characteristics. In particular, the audio analyzer performs a visual presentation of an acoustic signal in the frequency domain, where the frequency of the signal is displayed on the x-axis, while the amplitude of a certain frequency is displayed on the y-axis. In several of my previous videos I have presented several different types of such devices, but this time the FHT Arduino library is used for the first time. This library is several times faster than the commonly used FFT library, but at the expense of speed certain loss of resolution and precision appear at the two ends of the audio range. 

However, in the specific case we do not have to develop a measuring instrument but a simple gadget, we do not need extreme precision, we just have to turn on a handful of LEDs in musical rhythm.
  By the way, the project has been submitted to the Arduino Project Hub by the user with the nickname januks and is actually a rework of Shaajeb's excellent Spectrum analajzer project. I made minimal modifications to the hardware and code based on my ideas and requirements.

   The device is really simple to build, and consists of only a few components:
 - Arduino Nano MCU board,
 - 8x64 color Led Matrix with WS2812B adressable leds
 - Two (three) touch buttons
 - three resistors
 - and one capacitor

 This project is sponsored by PCBWay. They has all the services you need to create your project at the best price, whether is a scool project, or complex professional project. On PCBWay you can share your experiences, or get inspiration for your next project. They also provide completed Surface mount SMT PCB assemblY service at a best price, and ISO9001 quality control. Visit pcbway.com for more services

Now let's see how the device works in real conditions
 Considering that it is very simple, the device works immediately without any previous settings. One button is used to adjust the LED light intensity in 7 steps. With the other button we move through 6 different mods with specific color sets, and we can also add more, with very small modifications to the code. 
 

  Next, let's test the frequency range that this analyzer covers. For this purpose we will use a simple online tone generator. As you can see, the device covers the entire hearing range, from 20 Hertz to 20 kilohertz. Such a large-range device is excellent when is used for visual FFT analysis, but has one practical drawback when it comes to presenting musical materials. 

Namely, a large percentage (perhaps 90%) of this music signal is in the range up to 10Khz, and only a small part belongs to higher frequencies. This would practically mean that for the entire time that the music signal is being emitted, the far right part of the analyzer would be inactive. Let's see how it looks in practice (Here is an example with a speech signal, so we will try it with musical material as well). Since, as I mentioned at the beginning, this is a visual decorative addition, and not a precise measuring instrument, it is desirable to reduce the bandwidth by half, actually to 10 Kilohertz.
  For this case I made some modification in the code, but it is also desirable to set a simple Low-pass filter on the input. Let's test the range with an online tone generator at the input. The range is up to 10Khz.

    Now, in this case the matrix is completely filled and visually it looks much better. 
 As for the external appearance of the device, I tried to make a simple, but still functional version made of PVC board and glass with a thickness of 4 mm.
 And finally a short conclusion.
  This is an extremely simple project intended for beginners, but still visually very effective and can serve as a gadget on your desktop, or as an addition to an audio device. It can also be used as a simple school FFT spectrum analyzer instrument intended for educational purposes

 

CODE
/*
  Copyright (c) 2020 Janux

  Permission is hereby granted,   free of charge, to any person obtaining a copy
  of this software and associated   documentation files (the "Software"), to deal
  in the Software without restriction,   including without limitation the rights
  to use, copy, modify, merge, publish,   distribute, sublicense, and/or sell
  copies of the Software, and to permit persons   to whom the Software is
  furnished to do so, subject to the following conditions:
   The above copyright notice and this permission notice shall be included in all
   copies or substantial portions of the Software.
  THE SOFTWARE IS PROVIDED   "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  IMPLIED, INCLUDING BUT   NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  FITNESS FOR A PARTICULAR   PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  AUTHORS OR COPYRIGHT HOLDERS   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  LIABILITY, WHETHER IN AN ACTION OF   CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  OUT OF OR IN CONNECTION WITH THE   SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  SOFTWARE.

  Based on an   original project for the MAX72xx LED matrix and FFT lib made from Shajeeb.
  Configuration   settings section based on work of Ragnar Ranøyen Homb from Norvegian Creation.
*/

#define   LIN_OUT 1                //FHT linear output magnitude
#define FHT_N 128                //set   SAMPLES for FHT, Must be a power of 2
#include <FHT.h>

#define xres 32                  //Total number of columns in the display, must be <= SAMPLES/2
#define   yres 8                  //Total number of rows in the display
#define ledPIN   6                //out pint to control Leds
#define NUM_LEDS (xres * yres)  //total   leds in Matrix
#include <Adafruit_NeoPixel.h>
#include <Adafruit_NeoMatrix.h>

#define colorPIN 5        //pin   to change ledcolor
#define brightnessPIN 10  //pin to change brightness

byte   displaycolor = 0;    //default color value
byte brightness = 1;      //default   brightness level

#include <EEPROM.h>
#define CONFIG_START 32         //Memory   start location
#define CONFIG_VERSION "VER01"  //Config version configuration

typedef   struct {
  char version[6];
  byte displaycolor;
  byte brightness;
}   configuration_type;

configuration_type CONFIGURATION = {
  CONFIG_VERSION,
   displaycolor,
  brightness
};

byte yvalue;
int peaks[xres];
byte   state = HIGH;                    // the current reading from the input pin
byte   previousState = LOW;             // the previous reading from the input pin
unsigned   long lastDebounceTime = 0;   // the last time the output pin was toggled
unsigned   long debounceDelay = 100;    // the debounce time; increase if the output flickers

byte   data_avgs[xres]; //Array for samplig

// Parameter 1 = number of leds in matrix
//   Parameter 2 = pin number
// Parameter 3 = pixel type flags, add together as needed:
//    NEO_KHZ800  800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
//   NEO_KHZ400   400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
//   NEO_GRB     Pixels   are wired for GRB bitstream (most NeoPixel products)
//   NEO_RGB     Pixels   are wired for RGB bitstream (v1 FLORA pixels, not v2)
Adafruit_NeoPixel pixel   = Adafruit_NeoPixel(NUM_LEDS, ledPIN, NEO_GRB + NEO_KHZ800);

// EQ filter
byte   eq[32] = {
  60, 65, 70, 75, 80, 85, 90, 95,
  100, 100, 100, 100, 100, 100,   100, 100,
  100, 100, 100, 100, 100, 100, 100, 100,
  115, 125, 140, 160,   185, 200, 200, 200
};

bool EQ_ON = true; // set to false to disable eq

//Define   5 set of colors for leds, 0 for single custom color
byte colors[][8] = {
   {170, 160, 150, 140, 130, 120, 1, 1},
  {1, 5, 10, 15, 20, 25, 90, 90},
   {90, 85, 80, 75, 70, 65, 1, 1},
  {90, 90, 90, 30, 30, 30, 1, 1},
  {170,   160, 150, 140, 130, 120, 110, 0}
};

//Define chars for display settings
byte   charBitmap[] = {
  0x1C, 0x10, 0x10, 0x10, 0x10, 0x1C, 0x08, 0x18, 0x08, 0x08,   0x08, 0x1C,
  0x0C, 0x12, 0x04, 0x08, 0x10, 0x1E, 0x0C, 0x12, 0x02, 0x06, 0x12,   0x0C,
  0x10, 0x10, 0x10, 0x14, 0x1E, 0x04, 0x1E, 0x10, 0x1E, 0x02, 0x12, 0x0C,
   0x1E, 0x10, 0x10, 0x1E, 0x12, 0x1E, 0x1E, 0x02, 0x04, 0x08, 0x08, 0x08,
  0x0C,   0x12, 0x0C, 0x12, 0x12, 0x0C, 0x1C, 0x12, 0x1C, 0x12, 0x12, 0x1C
};

void   setup() {

  pixel.begin();           //initialize Led Matrix

  //Begin   FFT operations
  ADCSRA = 0b11100101;    // set ADC to free running mode and   set pre-scaler to 32 (0xe5)
  ADMUX =  0b00000000;    // use pin A0 and external   voltage reference

  // Read config data from EEPROM
  if (loadConfig())   {
    displaycolor = CONFIGURATION.displaycolor;
    brightness = CONFIGURATION.brightness;
   }

  //Set brightness loaded from EEPROM
  pixel.setBrightness(brightness   * 24 + 8);

  //Show current config on start
  //change true to false if   you don't want this
  showSettings(3, true);
}

void loop() {
  while   (1) {            // reduces jitter
    Sampling();          // FHT Library use   only one data array
    RearrangeFHT();      // re-arrange FHT result to match   with no. of display columns
    SendToDisplay();     // send to display according   measured value
    colorChange();       // check if button pressed to change   color
    brightnessChange();  // check if button pressed to change brightness
     delay(10);           // delay to reduce flickering (FHT is too fast :D)
   }
}

void Sampling() {
  for (int i = 0; i < FHT_N; i++) {
    while   (!(ADCSRA & 0x10));   // wait for ADC to complete current conversion ie ADIF bit   set
    ADCSRA = 0b11110101 ;       // clear ADIF bit so that ADC can do next   operation (0xf5)
    //ADLAR bit is 0, so the 10 bits of ADC Data registers are   right aligned
    byte m = ADCL;              // fetch adc data
    byte j   = ADCH;
    int value = (j << 8) | m;   // form into an int
    value -= 0x0200;             // form into a signed int
    value <<= 6;                // form   into a 16b signed int
    fht_input[i] = value / 8;   // copy to fht input array   after compressing
  }
  // ++ begin FHT data process -+-+--+-+--+-+--+-+--+-+--+-+--+-+-
   fht_window();    // window the data for better frequency response
  fht_reorder();    // reorder the data before doing the fht
  fht_run();       // process the   data in the fht
  fht_mag_lin();   // take the output of the fht
}

void   RearrangeFHT() {
  // FHT return real value unsing only one array
  // after   fht_mag_lin() calling the samples value are in
  // the first FHT_N/2 position   of the array fht_lin_out[]
  int step = (FHT_N / 2) / xres;
  int c = 0;
   for (int i = 0; i < (FHT_N / 2); i += step) {
    data_avgs[c] = 0;
    for   (int k = 0 ; k < step ; k++) {
      data_avgs[c] = data_avgs[c] + fht_lin_out[i   + k];  // linear output magnitude
    }
    data_avgs[c] = data_avgs[c] /   step ; // save avgs value
    c++;
  }
}

void SendToDisplay() {
   for (int i = 0; i < xres; i++) {
    if (EQ_ON)
      data_avgs[i] = data_avgs[i]   * (float)(eq[i]) / 100; // apply eq filter
    data_avgs[i] = constrain(data_avgs[i],   0, 80);        // set max & min values for buckets to 0-80
    data_avgs[i] =   map(data_avgs[i], 0, 80, 0, yres);     // remap averaged values to yres 0-8
     yvalue = data_avgs[i];
    peaks[i] = peaks[i] - 1;                              //   decay by one light
    if (yvalue > peaks[i]) peaks[i] = yvalue;             //   save peak if > previuos peak
    yvalue = peaks[i];                                    //   pick peak to display
    setColumn(i, yvalue);                                 //   draw columns
  }
  pixel.show();                                           //   show column
}

// Light up leds of x column according to y value
void   setColumn(byte x, byte y) {
  int led, i;

  for (i = 0; i < yres; i++)   {
    led = GetLedFromMatrix(x, i); //retrieve current led by x,y coordinates
     if (peaks[x] > i) {

      switch (displaycolor) {
        case 4:
           if (colors[displaycolor][i] == 0) {
            // show custom color   with zero value in array
            pixel.setPixelColor(led, 255, 255, 255);   //withe
          }
          else {
            // standard color defined   in colors array
            pixel.setPixelColor(led, Wheel(colors[displaycolor][i]));
           }
          break;

        case 5:
          //change color   by column
          pixel.setPixelColor(led, Wheel(x * 16));
          break;

         case 6:
          //change color by row
          pixel.setPixelColor(led,   Wheel(i * y * 3));
          break;

        case 7:
          //change   color by... country :D

          //Italy flagh
          //if (x < 11)   pixel.setPixelColor(led, 0, 255, 0);
          //if (x > 10 && x < 21) pixel.setPixelColor(led,   255, 255, 255);
          //if (x > 20) pixel.setPixelColor(led, 255, 0, 0);

           //stars and stripes
          if (i < yres - 2) {
            if   (x & 0x01) {
              pixel.setPixelColor(led, 0, 0, 255);
            }
             else {
              pixel.setPixelColor(led, 255, 0, 0);
            }
           }
          else {
            pixel.setPixelColor(led, 255, 255,   255);
          }

          break;

        default:
          //display   colors defined in color array
          pixel.setPixelColor(led, Wheel(colors[displaycolor][i]));
       }   //END SWITCH
    }
    else {
      //Light off leds
      pixel.setPixelColor(led,   pixel.Color(0, 0, 0));
    }
  }
}

//================================================================
//   Calculate a led number by x,y coordinates
// valid for WS2812B with serpentine   layout placed in horizzontal
// and zero led at bottom right (DIN connector on   the right side)
// input value: x= 0 to xres-1 , y= 0 to yres-1
// return   a led number from 0 to NUM_LED
//================================================================
int   GetLedFromMatrix(byte x, byte y) {
  int led;
  x = xres - x - 1;
  if   (x & 0x01) {
    //Odd columns increase backwards
    led = ((x + 1) * yres   - y - 1);
  }
  else {
    //Even columns increase normally
    led   = ((x + 1) * yres - yres + y);
  }
  return constrain(led, 0, NUM_LEDS);
}
//================================================================

void   colorChange() {
  int reading = digitalRead(colorPIN);
  if (reading == HIGH   && previousState == LOW && millis() - lastDebounceTime > debounceDelay) {
    displaycolor++;
     if (displaycolor > 7) displaycolor = 0;
    showSettings(1, true); //set   to false if you don't want this
    saveConfig();
    lastDebounceTime = millis();
   }
  previousState = reading;
}

void brightnessChange() {
  int   reading = digitalRead(brightnessPIN);
  if (reading == HIGH && previousState   == LOW && millis() - lastDebounceTime > debounceDelay) {
    brightness++;
     if (brightness > 7) brightness = 0;
    pixel.setBrightness(brightness *   24 + 8);
    showSettings(2, true); //set to false if you don't want this
     saveConfig();
    lastDebounceTime = millis();
  }
  previousState   = reading;
}

// Utility from Adafruit Neopixel demo sketch
// Input   a value 0 to 255 to get a color value.
// The colours are a transition R - G   - B - back to R.
unsigned long Wheel(byte WheelPos) {
  WheelPos = 255 - WheelPos;
   if (WheelPos < 85) {
    return pixel.Color(255 - WheelPos * 3, 0, WheelPos   * 3);
  }
  if (WheelPos < 170) {
    WheelPos -= 85;
    return pixel.Color(0,   WheelPos * 3, 255 - WheelPos * 3);
  }
  WheelPos -= 170;
  return pixel.Color(WheelPos   * 3, 255 - WheelPos * 3, 0);
}

// load whats in EEPROM in to the local   CONFIGURATION if it is a valid setting
int loadConfig() {
  if (EEPROM.read(CONFIG_START   + 0) == CONFIG_VERSION[0] &&
      EEPROM.read(CONFIG_START + 1) == CONFIG_VERSION[1]   &&
      EEPROM.read(CONFIG_START + 2) == CONFIG_VERSION[2] &&
      EEPROM.read(CONFIG_START   + 3) == CONFIG_VERSION[3] &&
      EEPROM.read(CONFIG_START + 4) == CONFIG_VERSION[4])   {

    // load (overwrite) the local configuration struct
    for (unsigned   int i = 0; i < sizeof(CONFIGURATION); i++) {
      *((char*)&CONFIGURATION +   i) = EEPROM.read(CONFIG_START + i);
    }
    return 1; // return 1 if config   loaded
  }
  return 0; // return 0 if config NOT loaded
}

// save   the CONFIGURATION in to EEPROM
void saveConfig() {
  CONFIGURATION.displaycolor   = displaycolor;
  CONFIGURATION.brightness = brightness;
  for (unsigned int   i = 0; i < sizeof(CONFIGURATION); i++)
    EEPROM.write(CONFIG_START + i, *((char*)&CONFIGURATION   + i));
}

// 1 display color level, 2 display brightness level, 3 both
void   showSettings(byte num, bool show) {
  if (show) {
    pixel.clear();
    if   (num == 1 || num == 3) {
      drawChar(0, 0);
      drawChar(displaycolor   + 1, 5);
    }
    if (num == 2 || num == 3) {
      drawChar(9, xres -   9);
      drawChar(brightness + 1, xres - 4);
    }
    delay(1000);
     pixel.clear();
  }
}

// Draw custom chars
void drawChar(byte   val, byte pos) {
  for (int x = 4; x >= 0; x--) {
    for (int y = 5; y >=   0; y--) {
      if ((charBitmap[val * 6 + 5 - y] >> x) & 0x01) {
        pixel.setPixelColor(GetLedFromMatrix(4   - x + pos, y + 1), Wheel((pos > 10) * 170));
        pixel.show();
      }
     }
  }
}
//by Janux®, Last version on 28/06/2020.
License
All Rights
Reserved
licensBg
0